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Electronic polaron of the AIN/GaN/AIN double
nanoheterostructure of hexagonal symmetry crystals
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A theoretical study of the polaron dispersion relation in the GaN crystal and AIN/GaN/AIN double nanoheterostructure is
presented. Every type of polarization oscillation with which an electron interacts is taken into account. Calculations are
performed in the framework of an infinite and a finite band gap models. It is shown that with the nanofilm thickness
increase, a contribution of the interface phonon in the polaron energy decreases, while that of the confined phonons gains
in value. The calculation results of the polaron dispersion relation in the region of k < ki in different polaron wave-vector
directions with respect to the c-axis of the crystal are given. Also, the polaron average speed and effective mass are
calculated. The results suggest an effective enhancement of the electron-phonon interaction with lowering of the system

dimensions number.
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1. Introduction

In recent years quantum heterostructures formed by
M-V nitrides (GaN, AIN, InN) have attracted particular
attention because of their potential applications in
optoelectronics [1-5].

In particular, progress in growth technology of
quantum dot structures based on crystals with hexagonal
symmetry made it possible to fabricate photodetectors and
lasers that function due to intersubband transitions. The
electron-phonon interaction in such processes plays an
important role.

Moreover, they are also interesting from purely
physical point of view since wurtzite-based crystals have
lower symmetry compared to zinc-blende counterparts
which are much more extensively studied. Crystals of both
symmetry types differ not only in the electron and hole
spectra but also in the phonon spectrum, and the phonon-
quasiparticle interaction [6-8].

Over the past decade numerous theoretical and
experimental studies on polarization and acoustic phonons
as well as the electron-phonon interaction in wurtzite
semiconductor heterostructures have been reported [8-13].
Most efforts have been directed toward a thorough
investigation of the phonon spectra in single
heterointerface systems [6-9], as well as the phonon
dispersion in superlattice structures within the dielectric
continuum approach and the Loudon uniaxial model
[12,13].

The authors have obtained the dispersion relations to
describe every type of polarization phonons, have drawn
and analysed the plots of these phonon dispersion
dependences. They also have presented general
Hamiltonians of an electron interacting with different
phonon modes.

However, the polaron states in the heterointerface
systems based on wurtzite structure crystals have not been
sufficiently investigated [14-15]. Most attempts in this
direction are restricted to research of the polaron states in
bulk crystals.

The present report is focused on a theoretical study of
the polaron dispersion relation in the GaN crystal and the
AIN/GaN/AIN double heterointerface nanoscale structure.

2. Statement of the problem

A bulk ideal wurtzite crystal with a unit-cell as a
hexagonal prism is considered. The III-V nitrides belong

to Cgv group of symmetry. They are formed by two

mutually penetrable hexagonal-packed sublattices which
are shifted along the C -axis (axis OZ of the coordinates
system) by 5/8 of the lattice constant. A unit cell contains
four atoms. Therefore, there exist nine optical and three
acoustic modes. But only two regions of optical phonons
are active in the infrared range and during combination
dispersion. They correspond to the unreducable
representations A1 and E of wave-vector group at the 4

point of the Brillouin zone. A1 and E1 modes split into

LO and TO components.
Due to optical anisotropy of such crystals long
wavelength optical vibrations can be classified with

respect to the C -axis orientation, phonon wave vector Q,
electric field £ and polarization P . This classification

makes it possible to divide them into the so-called
ordinary and extraordinary optical phonons. The ordinary
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phonons with £, -symmetry are always transversal (both
E and P are perpendicular to Q and the C -axis
simultaneously) and polarized in the plane that is

perpendicular to the vector Q. The frequency of the
ordinary phonons does not depend on the angle & between

the vector Q and C -axis. The extraordinary phonons are
related to z- and L -polarized vibrations. The mode
polarized in the direction of the OZ -axis has Al-
symmetry, and the one L -polarized has E1 -symmetry. If
the angle @ equals zero, one oscillation is A1 (LO)-

phonon, and the other is E (TO)-phonon. If @ changes
from 0 to 77 , these modes become gradually A1 (TO)-
and E1 (LO)-phonons with neither a distinct feature of
LO- or TO -character nor 4 - or E1 -symmetry. Thus, in

the case of @#0 and 6 = % the extraordinary vibrations

are a combination of LO and TO modes.
The extraordinary phonon dispersion relation in a
long-wavelength region is given by

£ (a))qi +é&, (a))Q% =0, Q)

2 2 2 2

0 - 0 -
where, ¢ (0)= ngijzi,sz(w):sgoziéL,
@ Teir @ T@r

gf, gzo are high-frequency dielectric permittivities,
9 and @_; are long-wavelength E| (LO)- and 4;

( LO)-phonon frequencies, @ T and @_p are transversal

E; (TO) and 4 (TO )-phonons at (3=0 .

The Hamiltonian of the phonons system interacting
with an electron is considered to study the polaron states:

H=H, +th +Hin . 2)
In the effective mass approximation, H e for a
uniaxial crystal is represented through
. 2 2 2 2 2
fe=- " v2 1R 52 +7. v :if%, 3)
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where m n and mH are effective masses of an electron in

the directions perpendicular and parallel to the C -axis
respectively, 7 is the potential energy of an electron. In
the bulk case, V' =0.

The phonon energy operator in the representation of
occupation numbers takes the form

A = Thoylq (55,56, + ). )

+
where b-
,V

is the creation operator with the wave vector

Q of phonon mode v .

The frequency of polarizations @ is obtained from
Eq. (1). For the wurtzites considered in the present paper,
conditions are fulfilled [7]:
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)
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By taking into account that g :Q-sin(é’), and
Q. :Q-cos(ﬁ), from Eq. (1) with regard for condition
(5), the solutions are

a)lz = a)iL cos? 6+ a)Jz_’L sin? 6, (6)
a)[z = wzzﬁT sin? 6+ wiT cos? 6, @)

These are predominantly longitudinal and transverse
modes, respectively. The electron — optical-phonon
Hamiltonian for the bulk material can be given as [6, 7]

mt—ZV a)r@a, z)z’qp(bQ+b+j ()

1 C 1
where V' = ——— 7
VSLQ a—(.SJ_(Cz))sin2 O+e;(w) cos? 49)
)

2 (G)= Q27

1
C=(47zhe2)é, Q2 =42+Q2,
SL is the crystal volume, the derivative with respect to

frequency is taken at a point @ = .

It is easy to see that in the case of

O] =0, 0, 7 =0,7, )

67 =e7 (10)

Egs. (6)-(8) are transformed into the well-known formulas
for the crystal with cubic symmetry [16, 17].

For hexagonal symmetry heterostructures with a
nanofilm adjacent at either side to two semi-infinite
crystals (double heterointerface nanoscale system), there
exist four different types of optical phonon modes. These
modes are referred to, similarly to those of zinc-blende-
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based heterosystem crystals, as interface, confined and
semiconfined. Moreover, generally speaking, there can be
a new phonon type in the system (compared to
heterostructures of cubic symmetry crystals) i.e., phonons
that propagate in the medium (propagating phonons).
Analogous to the case of cubic symmetry crystal
heterosystem, the operator of the electron interaction with
different modes can be represented as a sum of symmetric
and antisymmetric parts, that is for all the mentioned types
there also exist symmetric and antisymmetric phonons.

In a general case, the electron-phonon interaction
operator is a sum of eight terms each of them assumes the
form

FI:ZV(Q)ei"p(bq +qu), (11)
g
where ¢ is the phonon wave vector c}(q xdy )

The function V(c}) determines the phonon type with

which an electron interacts. For interface symmetric or
antisymmetric phonons, it is expressed by

S
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The frequencies of symmetric (antisymmetric)

phonons are determined from the dispersion relations

—&.,=0 (13)

within the frequency region when the inequalities are valid
61:(0)2:(0) <0, &1 (0)1()> 0 1 &3 (@)er. (@) > 0.
In formulas (12), (13) the following notation is

introduced:
& .
coi(@)=Vei 160, epi(@)= ’%Z, i=12,..
For the confined phonons (symmetric and

antisymmetric) V (q) is as follows:
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k,, is determined from
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For the symmetric and antisymmetric phonons m =
0,1,2,... and m=1,2,3,..., respectively.

The semiconfined polarization phonons — their E|
and D, being continuous functions at either interface with

the properties similar to those of bulk crystal phonons — if
z =100, are characterized by the following ¥(Q) for the
symmetric, antisymmetric phonon modes:

ViE}(Q>=V,;;<*>Vsz<Q,z>=

¢ [ai( 2L sin? 0, +¢&,, cos? 6,
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where the angle 6’2 is the one between the phonon wave

vector Q: (é ,Q, ) and the z-axis.

Egs. (15) are valid when the inequality &8, > 0 is
satisfied, because only in this case vibrations will decay in
&1 (o)

q
€1z (a))

Another type of vibrations — the ones that spread in
the medium — can exist only when the two inequalities are
fulfilled

the nanofilm region, since x| =

g ()&, (0)<0, & (@), (0)<0. (16)

The analysis shows that there is no frequency region
in the AIN/GaN/AIN heterosystem where inequalities (16)
are satisfied, therefore the above-mentioned phonons do
not exist in the heterosystem under consideration [7].

In order to determine the electron energy, one must
solve the Schrédinger equation with Hamiltonian (3)

Hope (F) = Egwe (F) - 17)

The electron potential energy in the heterosystem is
chosen as a rectangular potential well

0, |Z|<§
V()= . (18)
VO’ |z|>E

Then the wave function looks as follows:

ve(#) =" Pon ).

2 L
Ae , z<—A

where ¢, (z)= asin(;(z)+,8cos(;(z), |z|<L2

PO %

T

and the electron energy is described by

Ey(K)=L—+E,, (19)

p is the electron impulse, and En is found from the

dispersion relation by applying the boundary conditions
for both the wave function and its probability current
density at the interface.

In order to determine the polaron energy, the
perturbation theory and the variational Lee-Low-Pines
(LLP) method are used [17, 18]. By applying the LLP
method, it is taken into account that the considered system
contains a fast and a slow subsystems. The electron motion
in the direction normal to the interface is assumed a fast
subsystem. The adiabatic approximation is therefore used,
Hamiltonian (2) is averaged over the functions of the
electron ground stationary state in the motion along the z-
axis

H e ={0y(2)| g (2))=

2
:E‘1+7p +H ;
sz_ ph G

+ ZV(I) (g)(e"é P, b +e.c.) 20)
0 4 2)
where M| :_{)0(01 (z)V( )(q,z)(on (z)dz, n=1.

To Hamiltonian (20), two unitary transformations
are consecutively applied by operators

efipinh]

U—expl:q( 1(@)-b, s (q))}

where P = 7k is the polaron impulse.
After averaging of the obtained expression over the
vacuum phonon state and minimizing of the functional
— *
over f(q) and f (q),
heterosystem is found [20-22]

the polaron energy of the
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The polaron energy in the bulk material is determined
by similar formulas [17]. The difference is that expression

(21) contains the function M 11> resulting from the

translational symmetry deviation of the system in the z-
direction.

The crystals AIN, GaN are characterized by the small
constant of the electron-phonon interaction (« = 0.681,
a =0.466 respectively), therefore to determine the
polaron energy, one can use perturbation theory [14, 15]

2,2
E (k):E SR
pol 17" om
1
2
1 2
el e
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In receiving of formula (22), the adiabatic approach
was not used, thus it can be applied nod only for the small
values L of quantum well widths. Expressions (21) and
(22) reflect the wave-vector dependence of the polaron
energy, i.e. the quasiparticle dispersion relation.

3. Results and discussion

In the study of polaron states, we consider a small
range of the wave-vector change (k£ =~ 0). The quantities

n(k) and Epol (k) are obtained by expanding of the
corresponding expressions in series and taking only their

first terms [17]. Regarding the polaron dispersion relation
in a small but finite region of the wave-vector change

< . = W
< f N f << 0 ( ere 0 1s the

wave-vector critical value in the Brillouin zone), the

calculations E =F (l;) were carried out without
pol pol

any additional simplification of formulas (21), (22).
Material parameters are taken to be &7 =5.29,
o, =743cm™, o, =735cm™, o, =56lcm™,
®, =533cm™ for GaN. For AIN, we use &° =4.68,
o, =916cm™,

o, =660cm™ [6].

1

o, =893cm™, ‘

o, =673cm™,

It is seen from the above-defined formulas that the
functions of the electron interaction with different
polarization oscillation phonon modes of the hexagonal
symmetry crystal heterostructure are complex. Therefore,
it is worth examining the functions which assist to
calculate electron dispersion probabilities on these

. . T
phonons. For non-dimensional wave vectors (g =¢—),

a
this function is as follows:

- 7S
(q)= -7
2a
where a is the lattice constant.

2 2
A o o

15.10%

1ot

Fig)

5000

Fig.1. Dependence of the function ®=d(q) for half-space
(1), interface (2), confined (3) polarization phonons and
bulk crystal phonons (4) at L=25 4 and n=1.

Fig.1 shows the dependence of this function in the
particular case of the AIN/GaN/AIN heterosystem for
three types of polarization phonons (confined, interface,
half-space) at L = 25 A and » =1. Similar dependences
are received at L = 50, 75, 100, 125, 150 A. The analysis
shows that for small nanofilm thickness values the
interface phonons make a significant contribution in the
polaron energy. The rise of L leads to the reduction of this
contribution. If L > 100 A, then in the polaron energy
formation it is confined phonons that play a dominant role.

Note one more result. In Fig.1, curve 4 in the integral
form reflects the behaviour of curves 1-3. Thus, if one
chooses the model for heterosystem polarization phonons
to remain analogous to that of the bulk crystal, the energy
calculation results will be in a good agreement with the
data derived for all types of polarization oscillations [20-
22]. This property of polarization phonons is rather
general. It can be proved that the form-factor assigned to
the effective interelectron interaction due to polarization
vibrations for bulk crystal phonons is equal to the sum of
all polarization-mode form-factors of the heterosystem
[18].

For the sake of simplicity, the zero level of the
polaron energies is set at the electron first level energy
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El' In this case it is possible to compare the polaron

energies in different quantum wells as well as in a bulk
crystal.
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Fig. 2. (a) Polaron dispersion relation for the GaN

crystal in the cases of =0 (1), 0:% 2), 9:% 3).

(b) Polaron average speed for the GaN crystal in the
cases of =0 (1), 0:% 2).

Fig.2a demonstrates the calculation results of the
polaron dispersion relation in the range k <k I for the

GaN crystal in different polaron wave-vector directions
with respect to the C-axis of the crystal (angles 6’k ). As is

seen, the function Epol = Epo / (k) depends not only on

the wave-vector module but also on the angle g, at all

values of k. Besides in the range of very small &, the
dispersion relation has parabolic character. The increase of
k is followed by “deformations” of the dispersion
relation. The latter result is well seen from the dependence
of the polaron average speed

1 -
v= E|VEp01(k)| (24)

In the small & values region, the average speed is a
linear function of k& (Fig.2b). The difference between the
curves is determined by the initial electron mass which
varies in different directions. However, the further rise of

k results in the deviation of U:U(E) from a linear

dependence. Obviously, such behaviour of v=v(k)

should influence the electric and optoelectric crystal
properties.

The above-mentioned properties of Epo /= Epol (k)

and v = U(E ) are also typical of the AIN/GaN/AIN double

heterosystem. In this case the calculations show the
enhancement of all characteristics of the dispersion
relation and speed. Fig.3 illustrates that the polaron

binding energy (E, = |Epo / (0)) in the GaN bulk crystal

is smaller than that in the heterosystem. The reduction of
quantum well width (L) leads to the increase of this energy
and the dispersion relation deformation growth.

60
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40
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304
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104 = :::::r::::~:::;~;:: Fhrszzooo 4

T T 1
20 30 40 50 60 70 80 920 100 110

Fig.3 Polaron binding energy of the GaN (7) and AIN (8)

bulk crystals, and AIN/GaN/AIN heterosystem in the case

of IOW (curves 1,3,5), FOW (curves 2,4,6). 1,2 stand for

confined phonons, 3,4 regard for interface phonons, 5,6
stand for all phonons.

As to partial contributions, the confined phonons are
predominant at L > 40 A, though one cannot neglect
interface phonon contributions in the range of 40 A < L <
100 A. For thicknesses of L < 30 A the interface phonon
contribution becomes greater than that of the confined
phonons. As to the half-space phonon contribution, the
calculations show that they have little effect on the polaron
binding energy. For illustration, at L = 25 A for the
AIN/GaN/AIN double heterostructure within the infinite
quantum well (IQW) model, the contribution makes in the
case of confined phonons 22.536 meV, interface phonons
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22.633 meV, and half-space phonons 2.035 meV, while at
L =100 A it is 32.484 meV, 8.711 meV, 1.184 meV
respectively. Comparison of two models — the IQW
(V =0 in formula (18)) and the finite quantum well
(FQW) at the interface of the heterosystem — shows
similar results for all phonon types not only for great L
because of significant real quantum well depth. The
difference becomes essential (particularly for the confined
phonons at L <60 A (e.g. if L = 50 A, it makes 17%)).
Fig.4 shows the dependence of the dispersion relation
of a polaron that moves parallel to the heterosystem
interfaces at L < 25 A. In the range of wave-vector small
values for all phonon modes and both potential well
models, the quadratic dependences of functions

E_,=E (k) are received. The wave-vector rise
pol pol

results in the “dispersion relation deformation”. If one
takes account of all phonon modes, as is seen from the
figure, the polaron energy for the V0 =00 model is smaller

than that for the finite value of VO. However, the wave-

vector growth is followed by the reduction of the polaron
energy difference within different QW models.

404
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E_(k), meV
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I

Fig. 4. Polaron energy of the heterosystem AIN/GaN/AIN

for OW at L = 25 A in the case of IQW (curves 1,3,5),

FOW (curves 2,4,6). 1,2 show the energy with regard for

confined phonons, 3,4 stand for the interface phonons,
5,6 stand for all phonons.

Since the dispersion relation is known, one can
determine the polaron average speed

1 -
v=—V_E k 25
v 7 i po l( ) (25)
This quantity enters the formulas of kinetic

coefficients as well as defines the degree of polaron
dispersion relation "deformation". It is seen from Fig.5
that in the region of small wave-vector values, the increase
of k — as a result of all phonon modes contribution —

results in v=v(k) approaching saturation, i.e., the

polaron dispersion relation Epol :Epol(k) transfers

from a quadratic function (at £ =0) into a liner one (at

k=kp).

0,40
0,35
0,30

0,25

o g PrRrpopw

0,20

0,15

0,10

0,05

0,00

-0,05

Fig.5. Polaron average speed of the AIN/GaN/AIN
heterosystem for QW with L = 254 in the cases of IQW
(curves 1,3,5) and FOQW (curves 2,4,6). 1,2 regard for the
interaction with confined phonons, 3,4 take account of
interface phonons, 5,6 regard for all phonons.

Alongside with the speed, the polaron effective mass
is also important:

= P (26)
k=0

Fig.6 depicts that the reduction of L is followed by
polaron effective mass growth. It points out — similarly to
the polaron binding energy enhancement — the increase of
the effective electron-phonon interaction. The rise of
particle spatial confinement also leads to its effective mass
growth.
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Fig. 6. Polaron effective mass of the AIN/GaN/AIN
heterosystem in the case of IQW (1), FOW (2) with
regard for all phonons.
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4. Conclusions

Therefore, the report presents a theoretical study of
the polaron dispersion relation in the GaN crystal and
AIN/GaN/AIN double nanoheterostructure by taking into
account all types of polarization oscillations with which an
electron interacts within the models of infinite and finite
band gaps. Calculations of the average speed and the
polaron effective mass are performed. It is shown that
when a nanofilm thickness increases, the interface phonon
contribution in the polaron energy decreases, while that of
the confined phonons grows. The calculation results of the
polaron dispersion relation in the region of k < k; in
different directions of the polaron wave-vector with
respect to the C-axis of the crystal are given. The
reduction of the dimension number of the system and
increase of the wave-vector k& cause an effective
enhancement of the electron-phonon interaction.
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