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A theoretical study of the polaron dispersion relation in the GaN crystal and AlN/GaN/AlN double nanoheterostructure is 
presented. Every type of polarization oscillation with which an electron interacts is taken into account. Calculations are 
performed in the framework of an infinite and a finite band gap models. It is shown that with the nanofilm thickness 
increase, a contribution of the interface phonon in the polaron energy decreases, while that of the confined phonons gains 
in value. The calculation results of the polaron dispersion relation in the region of k < kf in different polaron wave-vector 
directions with respect to the c-axis of the crystal are given. Also, the polaron average speed and effective mass are 
calculated. The results suggest an effective enhancement of the electron-phonon interaction with lowering of the system 
dimensions number. 
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1. Introduction 
 
In recent years quantum heterostructures formed by 

III-V nitrides (GaN, AlN, InN) have attracted particular 
attention because of their potential applications in 
optoelectronics [1-5]. 

In particular, progress in growth technology of 
quantum dot structures based on crystals with hexagonal 
symmetry made it possible to fabricate photodetectors and 
lasers that function due to intersubband transitions. The 
electron-phonon interaction in such processes plays an 
important role. 

Moreover, they are also interesting from purely 
physical point of view since wurtzite-based crystals have 
lower symmetry compared to zinc-blende counterparts 
which are much more extensively studied. Crystals of both 
symmetry types differ not only in the electron and hole 
spectra but also in the phonon spectrum, and the phonon-
quasiparticle interaction [6-8]. 

Over the past decade numerous theoretical and 
experimental studies on polarization and acoustic phonons 
as well as the electron-phonon interaction in wurtzite 
semiconductor heterostructures have been reported [8-13]. 
Most efforts have been directed toward a thorough 
investigation of the phonon spectra in single 
heterointerface systems [6-9], as well as the phonon 
dispersion in superlattice structures within the dielectric 
continuum approach and the Loudon uniaxial model              
[12, 13]. 

The authors have obtained the dispersion relations to 
describe every type of polarization phonons, have drawn 
and analysed the plots of these phonon dispersion 
dependences. They also have presented general 
Hamiltonians of an electron interacting with different 
phonon modes. 

However, the polaron states in the heterointerface 
systems based on wurtzite structure crystals have not been 
sufficiently investigated [14-15]. Most attempts in this 
direction are restricted to research of the polaron states in 
bulk crystals. 

The present report is focused on a theoretical study of 
the polaron dispersion relation in the GaN crystal and the 
AlN/GaN/AlN double heterointerface nanoscale structure. 

 
 

2. Statement of the problem 
 
A bulk ideal wurtzite crystal with a unit-cell as a 

hexagonal prism is considered. The III-V nitrides belong 

to 4
6C v  group of symmetry. They are formed by two 

mutually penetrable hexagonal-packed sublattices which 
are shifted along the C -axis (axis OZ  of the coordinates 
system) by 5/8 of the lattice constant. A unit cell contains 
four atoms. Therefore, there exist nine optical and three 
acoustic modes. But only two regions of optical phonons 
are active in the infrared range and during combination 
dispersion. They correspond to the unreducable 
representations 1A  and 1E  of wave-vector group at the Ã  

point of the Brillouin zone. 1A  and 1E  modes split into 

LO  and TO  components. 
Due to optical anisotropy of such crystals long 

wavelength optical vibrations can be classified with 
respect to the C -axis orientation, phonon wave vector Q

r
, 

electric field E
r

 and polarization P
r

. This classification 
makes it possible to divide them into the so-called 
ordinary and extraordinary optical phonons. The ordinary 
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phonons with 1E -symmetry are always transversal (both 

E
r

 and P
r

 are perpendicular to Q
r

 and the C -axis 
simultaneously) and polarized in the plane that is 
perpendicular to the vector Q

r
. The frequency of the 

ordinary phonons does not depend on the angle θ  between 
the vector Q

r
 and C -axis. The extraordinary phonons are 

related to z - and ⊥ -polarized vibrations. The mode 
polarized in the direction of the OZ -axis has 1A -

symmetry, and the one ⊥ -polarized has 1E -symmetry. If 

the angle θ  equals zero, one oscillation is 1A  ( LO )-

phonon, and the other is 1E  (TO )-phonon. If θ  changes 

from 0  to 2
π , these modes become gradually 1A  (TO )- 

and 1E  ( LO )-phonons with neither a distinct feature of 

LO - or TO -character nor 1A - or 1E -symmetry. Thus, in 

the case of 0θ ≠  and 2
πθ ≠  the extraordinary vibrations 

are a combination of LO  and TO  modes. 
The extraordinary phonon dispersion relation in a 

long-wavelength region is given by 
 

( ) ( )2 2Q 0,q z zε ω ε ω+ =⊥ ⊥                   (1) 
 

where, ( )
2 2

2 2
L

T

ω ω
ε ω ε

ω ω

−∞ ⊥=⊥ ⊥ − ⊥
, ( )

2 2

2 2
zLz z
zT

ω ω
ε ω ε

ω ω

−∞=
−

, 

ε∞⊥ , zε
∞  are high-frequency dielectric permittivities, 

Lω⊥  and zLω  are long-wavelength 1E  ( LO )- and 1A  

( LO )-phonon frequencies, Tω⊥  and zTω  are transversal 

1E  ( TO ) and 1A  (TO )-phonons at Q=0
r

. 
The Hamiltonian of the phonons system interacting 

with an electron is considered to study the polaron states: 
 

ˆ ˆ ˆ ˆH=H +H +He ph int .                             (2) 

 
In the effective mass approximation, Ĥe  for a 

uniaxial crystal is represented through  
 

2 2 22Ĥ ,e 22 2 ||
V

m m zρ
∂

= − ∇ − +
∂⊥

h h
r  

2 22 ,2 2x y
ρ

∂ ∂
∇ = +

∂ ∂
  (3) 

 
where m⊥  and ||m  are effective masses of an electron in 

the directions perpendicular and parallel to the C -axis 
respectively, V  is the potential energy of an electron. In 
the bulk case, 0V = . 

The phonon energy operator in the representation of 
occupation numbers takes the form 

 

( )∑ ⎟
⎠
⎞⎜

⎝
⎛ += +

ν
νννω

,
,,

Q
QQ 2

1ˆ
r

rr
r

h bbqH ph ,                 (4) 

 
where +

Q,
b

ν
r  is the creation operator with the wave vector 

Q
r

 of phonon mode ν . 
The frequency of polarizations ω  is obtained from 

Eq. (1). For the wurtzites considered in the present paper, 
conditions are fulfilled [7]: 

 

.,

,

,,,,

,,,,

TzLzTL

TzTLzL

ωωωω

ωωωω

−−<<

<<−−

⊥⊥

⊥⊥
                (5) 

 
By taking into account that ( )θsinQ ⋅=q , аnd 

( )θcosQQ ⋅=z , from Eq. (1) with regard for condition 
(5), the solutions are 
 

θωθωω 22
,

22
,

2 sincos LLzl ⊥+= ,                   (6) 
 

θωθωω 22
,

22
,

2 cossin TTzt ⊥+= ,                   (7) 
 

These are predominantly longitudinal and transverse 
modes, respectively. The electron – optical-phonon 
Hamiltonian for the bulk material can be given as [6, 7] 
 

( )( ) ( )( ) ⎟
⎠
⎞⎜

⎝
⎛ +⋅= +

−∑ QQ
Q

21
int z,QQˆ rr

rr

r

rr
bbeVVH qi ρ ,     (8) 

 

where 
( )

( ) ( )( )
1

Q

1
2 2sin cos

C
V

SL zε ω θ ε ω θ
ω

= ∂
+⊥∂

%
, 

( ) ( )2 QzQ,z i zV e=
r

, 

( )
1

2 24C eπ= h , 2 2 2Q Qzq= + , 

LS~  is the crystal volume, the derivative with respect to 
frequency is taken at a point lω ω= . 

It is easy to see that in the case of 
 

LzL ,, ωω =⊥ , TzT ,, ωω =⊥ ,                (9) 
 

∞∞
⊥ = zεε                             (10) 

 
Eqs. (6)-(8) are transformed into the well-known formulas 
for the crystal with cubic symmetry [16, 17]. 

For hexagonal symmetry heterostructures with a 
nanofilm adjacent at either side to two semi-infinite 
crystals (double heterointerface nanoscale system), there 
exist four different types of optical phonon modes. These 
modes are referred to, similarly to those of zinc-blende-
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based heterosystem crystals, as interface, confined and 
semiconfined. Moreover, generally speaking, there can be 
a new phonon type in the system (compared to 
heterostructures of cubic symmetry crystals) i.e., phonons 
that propagate in the medium (propagating phonons). 
Analogous to the case of cubic symmetry crystal 
heterosystem, the operator of the electron interaction with 
different modes can be represented as a sum of symmetric 
and antisymmetric parts, that is for all the mentioned types 
there also exist symmetric and antisymmetric phonons. 

In a general case, the electron-phonon interaction 
operator is a sum of eight terms each of them assumes the 
form 

( ) ( )∑ +
−+=

q
qq

qi bbeqVH
r

rr
rrr ρˆ ,                      (11) 

where q
r

 is the phonon wave vector ( )yx qqq ,
r

. 

The function ( )qV
r

 determines the phonon type with 
which an electron interacts. For interface symmetric or 
antisymmetric phonons, it is expressed by 

( ) ( ) ( ) ( ) ( )
1 2

,

1
2

1 2
2 1 2

1 2

S
AV q V q V q zIF IF IF

qLth bC q c cqLS cth b

ε
ε ε

ω
ε

⎧ ⎫
⎪ ⎪
⎨ ⎬
⎪ ⎪
⎩ ⎭ = ⋅ =

−
⎡ ⎤⎛ ⎞⎧ ⎫⎛ ⎞
⎢ ⎥⎜ ⎟⎜ ⎟⎪ ⎪∂ ⎪ ⎝ ⎠ ⎪⎢ ⎥⎜ ⎟= − ×⎨ ⎬⎢ ⎥⎜ ⎟∂ ⎛ ⎞⎪ ⎪⎢ ⎥⎜ ⎟⎜ ⎟⎜ ⎟⎪ ⎪⎝ ⎠⎢ ⎥⎩ ⎭⎝ ⎠⎣ ⎦

r r r

 

( )

( )

( )

1

1 2
,

2
1

1 2
1

exp ,2sgn 2 2

ch qzb
qLch b Lz

sh qzb
qLsh b

L Lq z zbz

ε

ε

ε

ε

ε

⎧ ⎧ ⎫
⎪ ⎪ ⎪

⎛ ⎞⎪ ⎪ ⎪⎜ ⎟⎪ ⎪ ⎪⎪ ⎝ ⎠⎪ ≤⎪ ⎨ ⎬
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⎧ ⎫⎪ ⎡ ⎤⎛ ⎞− − >⎨ ⎬ ⎜ ⎟⎪ ⎢ ⎥⎝ ⎠⎣ ⎦⎩ ⎭⎩

.     (12) 

 
The frequencies of symmetric (antisymmetric) 

phonons are determined from the dispersion relations 
 

1 2
01 2

1 2

qLth b
c cqLcth b

ε
ε ε

ε

⎧ ⎫⎛ ⎞
⎜ ⎟⎪ ⎪⎪ ⎝ ⎠ ⎪ − =⎨ ⎬
⎛ ⎞⎪ ⎪⎜ ⎟⎪ ⎪⎝ ⎠⎩ ⎭

                  (13) 

 
within the frequency region when the inequalities are valid 

( ) ( ) 021 <ωεωε zz , ( ) ( ) 011 >⊥ ωεωε z  і ( ) ( ) 022 >⊥ ωεωε z . 
In formulas (12), (13) the following notation is 

introduced: 

( ) ( ) ,...2,1,, === ⊥
⊥ i

iz
ibiizici ε
εωεεεωε . 

For the confined phonons (symmetric and 
antisymmetric) ( )V q  is as follows: 
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where 

( )
( ) ( ) ( ) ( )
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0
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under the condition that 
⎭
⎬
⎫

⎩
⎨
⎧

+
+

<<
⎭
⎬
⎫

⎩
⎨
⎧

− 12
22

12
2

m
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L
k

m
m

L m
ππ . 

For the symmetric and antisymmetric phonons m = 
0,1,2,… and m=1,2,3,…, respectively. 

The semiconfined polarization phonons – their ⊥E  
and zD  being continuous functions at either interface with 
the properties similar to those of bulk crystal phonons – if 

±∞=z , are characterized by the following ( )QV  for the 
symmetric, antisymmetric phonon modes: 
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where the angle 2θ  is the one between the phonon wave 

vector ( )Q= ,Qq z
r r  and the z-axis. 

Eqs. (15) are valid when the inequality 01 1zε ε >⊥  is 

satisfied, because only in this case vibrations will decay in 

the nanofilm region, since 
( )
( )

qк
z ωε

ωε

1

1
1

⊥= . 

Another type of vibrations – the ones that spread in 
the medium – can exist only when the two inequalities are 
fulfilled 

 
( ) ( ) ( ) ( )0, 01 2 2 2z zε ω ε ω ε ω ε ω< <⊥ ⊥ .    (16) 

 
The analysis shows that there is no frequency region 

in the AlN/GaN/AlN heterosystem where inequalities (16) 
are satisfied, therefore the above-mentioned phonons do 
not exist in the heterosystem under consideration [7]. 

In order to determine the electron energy, one must 
solve the Schrödinger equation with Hamiltonian (3) 

 
( ) ( )Ĥ r E re e e eψ ψ=
r r .                   (17) 

 
The electron potential energy in the heterosystem is 

chosen as a rectangular potential well 
 

( )
0,

2

,0 2

Lz
V z

LV z

⎧ <⎪⎪= ⎨
⎪ ≥⎪⎩

.                      (18) 

 
Then the wave function looks as follows: 

( ) ( )1 ikr e ze nS
ρψ ϕ=
r r

r , 

where ( ) ( ) ( )

0 , 2
sin cos , 2

0 , 2

z LAe z

Lz z z zn
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χ

ϕ α χ β χ
χ

⎧ < −⎪
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⎪ −⎪ >⎩

, 

( )
2 ||2

0 02

m
V Eχ = −

h
, 

2 ||1
2

m
Eχ =

h
, 

and the electron energy is described by 

( )
2

2
pE k En nm

= +
⊥

r
% ,                       (19) 

 
pr  is the electron impulse, and En%  is found from the 

dispersion relation by applying the boundary conditions 
for both the wave function and its probability current 
density at the interface. 

In order to determine the polaron energy, the 
perturbation theory and the variational Lee-Low-Pines 
(LLP) method are used [17, 18]. By applying the LLP 
method, it is taken into account that the considered system 
contains a fast and a slow subsystems. The electron motion 
in the direction normal to the interface is assumed a fast 
subsystem. The adiabatic approximation is therefore used, 
Hamiltonian (2) is averaged over the functions of the 
electron ground stationary state in the motion along the z-
axis 

 
( ) ( )ˆ ˆ

1 1H z H zef ϕ ϕ= =  

( ) ( ) ( )2 1ˆ . .1 112
p iqE H V q e M b e cph qm q

ρ= + + + +∑
⊥
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where ( ) ( ) ( ) ( )
2

,1 1M z V q z z dznn ϕ ϕ
∞ ∗= ∫
−∞

r , 1n = . 

To Hamiltonian (20), two unitary transformations 
are consecutively applied by operators 

 

ˆ exp iS P b b qq qq
ρ
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⎢ ⎥⎣ ⎦

r r
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where P k=

rr
h  is the polaron impulse. 

After averaging of the obtained expression over the 
vacuum phonon state and minimizing of the functional 
over ( )f qr  and ( )f q∗ r , the polaron energy of the 
heterosystem is found [20-22] 
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where ( ) 2
minP f q q

q
η ∑=
r r r

hr ,  

( )
( ) ( )

( )

1
11

min 2 2 2
1

2

V q M
f q

q kq
m m

ω η

∗ ∗
= −

+ − −
⊥ ⊥

r
r

rrh h
h

. 

The polaron energy in the bulk material is determined 
by similar formulas [17]. The difference is that expression 
(21) contains the function 11M , resulting from the 
translational symmetry deviation of the system in the z-
direction. 

The crystals AlN, GaN are characterized by the small 
constant of the electron-phonon interaction ( 0.681α = , 

0.466α =  respectively), therefore to determine the 
polaron energy, one can use perturbation theory [14, 15] 

 

( )

( ) ( )

( )

2 2
1 2

2 21
1

22, 2 2
1 2 2

kE k Epol m

V q M n

n q k qkE En m m
ω

= + +
⊥

+ ∑
−

− − + −
⊥ ⊥

r h%

r

r r r
hh% % h

.       (22) 

 
In receiving of formula (22), the adiabatic approach 

was not used, thus it can be applied nod only for the small 
values L  of quantum well widths. Expressions (21) and 
(22) reflect the wave-vector dependence of the polaron 
energy, i.e. the quasiparticle dispersion relation. 

 
 

3. Results and discussion 
 
In the study of polaron states, we consider a small 

range of the wave-vector change ( 0k ≈ ). The quantities 

( )kη
r

 and ( )E kpol
r

 are obtained by expanding of the 

corresponding expressions in series and taking only their 
first terms [17]. Regarding the polaron dispersion relation 
in a small but finite region of the wave-vector change 

0 k k f≤ < , 0
2

k
ωm

fk <<⊥=
h

h
 (where 0k  is the 

wave-vector critical value in the Brillouin zone), the 
calculations ( )E E kpol pol=

r
 were carried out without 

any additional simplification of formulas (21), (22). 
Material parameters are taken to be 5.29ε ∞ = , 

1743L cmω −
⊥ = , 1735zL cmω −= , 1561cmω −

⊥ = , 
1533z cmω −=  for GaN. For AlN, we use 4.68ε ∞ = , 

1916L cmω −
⊥ = , 1893zL cmω −= , 1673cmω −

⊥ = , 
1660z cmω −=  [6]. 

It is seen from the above-defined formulas that the 
functions of the electron interaction with different 
polarization oscillation phonon modes of the hexagonal 
symmetry crystal heterostructure are complex. Therefore, 
it is worth examining the functions which assist to 
calculate electron dispersion probabilities on these 

phonons. For non-dimensional wave vectors ( q q
a
π

= % ), 

this function is as follows: 

( ) ( ) 2 21
122

Sq V M qna

π
Φ =% % , 

where a  is the lattice constant. 
 

 
 

Fig.1. Dependence of the function Ф=Ф(q) for half-space 
(1), interface (2), confined (3) polarization phonons and  
       bulk crystal  phonons (4) at L=25 Å and n=1. 

 
 

Fig.1 shows the dependence of this function in the 
particular case of the AlN/GaN/AlN heterosystem for 
three types of polarization phonons (confined, interface, 
half-space) at L = 25 Å and 1n = . Similar dependences 
are received at L = 50, 75, 100, 125, 150 Å. The analysis 
shows that for small nanofilm thickness values the 
interface phonons make a significant contribution in the 
polaron energy. The rise of L leads to the reduction of this 
contribution. If L > 100 Å, then in the polaron energy 
formation it is confined phonons that play a dominant role. 

Note one more result. In Fig.1, curve 4 in the integral 
form reflects the behaviour of curves 1-3. Thus, if one 
chooses the model for heterosystem polarization phonons 
to remain analogous to that of the bulk crystal, the energy 
calculation results will be in a good agreement with the 
data derived for all types of polarization oscillations [20-
22]. This property of polarization phonons is rather 
general. It can be proved that the form-factor assigned to 
the effective interelectron interaction due to polarization 
vibrations for bulk crystal phonons is equal to the sum of 
all polarization-mode form-factors of the heterosystem 
[18]. 

For the sake of simplicity, the zero level of the 
polaron energies is set at the electron first level energy 
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1E% . In this case it is possible to compare the polaron 
energies in different quantum wells as well as in a bulk 
crystal. 
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Fig. 2. (a) Polaron dispersion relation for the GaN 
crystal in the cases of 0θ =  (1), 2

πθ =  (2), 4
πθ =  (3). 

(b) Polaron average speed for the GaN crystal in the  
            cases of 0θ =  (1), 2

πθ =  (2). 

 
 
 

Fig.2a demonstrates the calculation results of the 
polaron dispersion relation in the range k k f<  for the 

GaN crystal in different polaron wave-vector directions 
with respect to the C-axis of the crystal (angles kθ ). As is 

seen, the function ( )E E kpol pol=
r

 depends not only on 

the wave-vector module but also on the angle kθ  at all 

values of k . Besides in the range of very small k , the 
dispersion relation has parabolic character. The increase of 
k  is followed by “deformations” of the dispersion 
relation. The latter result is well seen from the dependence 
of the polaron average speed 

1 ( )E kpolυ = ∇
r

h
                            (24) 

 
In the small k  values region, the average speed is a 

linear function of k  (Fig.2b). The difference between the 
curves is determined by the initial electron mass which 
varies in different directions. However, the further rise of 
k  results in the deviation of ( )kυ υ=

r
 from a linear 

dependence. Obviously, such behaviour of ( )kυ υ=
r

 
should influence the electric and optoelectric crystal 
properties. 

The above-mentioned properties of ( )E E kpol pol=
r

 

and ( )kυ υ=
r

 are also typical of the AlN/GaN/AlN double 

heterosystem. In this case the calculations show the 
enhancement of all characteristics of the dispersion 
relation and speed. Fig.3 illustrates that the polaron 

binding energy ( ( )0E Ec pol≡ ) in the GaN bulk crystal 

is smaller than that in the heterosystem. The reduction of 
quantum well width (L) leads to the increase of this energy 
and the dispersion relation deformation growth. 
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Fig.3 Polaron binding energy of the GaN (7) and AlN (8) 
bulk crystals, and AlN/GaN/AlN heterosystem in the case 
of IQW (curves 1,3,5), FQW (curves 2,4,6). 1,2 stand for 
confined phonons, 3,4 regard for interface phonons, 5,6  
                               stand for all phonons. 

 
 
 

As to partial contributions, the confined phonons are 
predominant at L > 40 Å, though one cannot neglect 
interface phonon contributions in the range of 40 Å < L < 
100 Å. For thicknesses of L < 30 Å the interface phonon 
contribution becomes greater than that of the confined 
phonons. As to the half-space phonon contribution, the 
calculations show that they have little effect on the polaron 
binding energy. For illustration, at L = 25 Å for the 
AlN/GaN/AlN double heterostructure within the infinite 
quantum well (IQW) model, the contribution makes in the 
case of confined phonons 22.536 meV, interface phonons  
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22.633 meV, and half-space phonons 2.035 meV, while at 
L = 100 Å it is 32.484 meV, 8.711 meV, 1.184 meV 
respectively. Comparison of two models – the IQW 
(V = ∞  in formula (18)) and the finite quantum well 
(FQW) at the interface of the heterosystem – shows 
similar results for all phonon types not only for great L 
because of significant real quantum well depth. The 
difference becomes essential (particularly for the confined 
phonons at  L < 60 Å (e.g. if L = 50 Å, it makes 17%)). 

Fig.4 shows the dependence of the dispersion relation 
of a polaron that moves parallel to the heterosystem 
interfaces at L < 25 Å. In the range of wave-vector small 
values for all phonon modes and both potential well 
models, the quadratic dependences of functions 

( )E E kpol pol=  are received. The wave-vector rise 

results in the “dispersion relation deformation”. If one 
takes account of all phonon modes, as is seen from the 
figure, the polaron energy for the 0V = ∞  model is smaller 

than that for the finite value of 0V . However, the wave-

vector growth is followed by the reduction of the polaron 
energy difference within different QW models. 
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Fig. 4. Polaron energy of the heterosystem AlN/GaN/AlN 
for QW at L = 25 Å in the case of IQW (curves 1,3,5), 
FQW (curves 2,4,6). 1,2 show the energy with regard for 
confined  phonons,  3,4  stand  for the interface phonons,  
                        5,6 stand for all phonons. 

 
 
 

Since the dispersion relation is known, one can 
determine the polaron average speed 

 
1 ( )v E kpolk

= ∇
rr

r
h

                         (25) 

 
This quantity enters the formulas of kinetic 

coefficients as well as defines the degree of polaron 
dispersion relation "deformation". It is seen from Fig.5 
that in the region of small wave-vector values, the increase 
of k  – as a result of all phonon modes contribution – 
results in ( )v v k=  approaching saturation, i.e., the 
polaron dispersion relation ( )E E kpol pol=  transfers 

from a quadratic function (at 0k = ) into a liner one (at 
k k f= ). 
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Fig.5. Polaron average speed of the AlN/GaN/AlN 
heterosystem for QW with L = 25Å in the cases of IQW 
(curves 1,3,5) and FQW (curves 2,4,6). 1,2 regard for the 
interaction  with  confined  phonons,  3,4  take account of  
         interface phonons, 5,6 regard for all phonons. 

 
 
 
 

Alongside with the speed, the polaron effective mass 
is also important: 

 
2 ( )1 1

2 2
0

E kpol
m kp

k

∂
=

∂
=

h
                   (26) 

 
Fig.6 depicts that the reduction of L  is followed by 

polaron effective mass growth. It points out − similarly to 
the polaron binding energy enhancement − the increase of 
the effective electron-phonon interaction. The rise of 
particle spatial confinement also leads to its effective mass 
growth. 
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Fig. 6. Polaron effective mass of the AlN/GaN/AlN 
heterosystem in the case of IQW (1), FQW (2) with 

regard for all phonons. 
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4. Conclusions 
 
Therefore, the report presents a theoretical study of 

the polaron dispersion relation in the GaN crystal and 
AlN/GaN/AlN double nanoheterostructure by taking into 
account all types of polarization oscillations with which an 
electron interacts within the models of infinite and finite 
band gaps. Calculations of the average speed and the 
polaron effective mass are performed. It is shown that 
when a nanofilm thickness increases, the interface phonon 
contribution in the polaron energy decreases, while that of 
the confined phonons grows. The calculation results of the 
polaron dispersion relation in the region of k < kf in 
different directions of the polaron wave-vector with 
respect to the С-axis of the crystal are given. The 
reduction of the dimension number of the system and 
increase of the wave-vector k cause an effective 
enhancement of the electron-phonon interaction. 
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